Seeking gene relationships in gene expression data using support vector machine regression

نویسندگان

  • Robert Yu
  • Kevin DeHoff
  • Christopher I Amos
  • Sanjay Shete
چکیده

Several genetic determinants responsible for individual variation in gene expression have been located using linkage and association analyses. These analyses have revealed regulatory relationships between genes. The heritability of expression variation as a quantitative phenotype reflects its underlying genetic architecture. Using support vector machine regression (SVMR) and gene ontological information, we proposed an approach to identify gene relationships in expression data provided by Genetic Analysis Workshop 15 that would facilitate subsequent genetic analyses. A group of related genes were selected for a shared biological theme, and SVMR was trained to form a regression model using the training gene expressions. The model was subsequently used to search for and capture similarly related genes. SVMR shows promising capability in modeling and seeking gene relationships through expression data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

Application of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation

Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...

متن کامل

Simulation and prediction of scour whole dimensions downstream of siphon overflow using support vector machine and Gene expression programming algorithms

Background and Objectives: The purpose of this study is to simulate and predict the dimensions of the scour cavity downstream of the siphon overflow using the SVM model and compare it with other numerical methods. The use of the SVM algorithm as a meta-heuristic system in simulating complex processes in which the dependent variable is a function of several independent variables has been widely ...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BMC Proceedings

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007